A Note on the Automorphism Group of the Rank Two Free Group

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The automorphism group of a free-by-cyclic group in rank 2

Let φ be an automorphism of a free group Fn of rank n, and let Mφ = Fn oφ Z be the corresponding mapping torus of φ. We study the group Out(Mφ) under certain technical conditions on φ. Moreover, in the case of rank 2, we classify the cases when this group is finite or virtually cyclic, depending on the conjugacy class of the image of φ in GL2(Z). As an application, we solve the isomorphism prob...

متن کامل

The Automorphism Group of a Free-by-cyclic Group in Rank

Let φ be an automorphism of a free group F2 of rank 2 and let Mφ = F2 oφ Z be the corresponding mapping torus of φ. We prove that the group Out(Mφ) is usually virtually cyclic. Moreover, we classify the cases when this group is finite depending on the conjugacy class of the image of φ in GL2(Z).

متن کامل

THE AUTOMORPHISM GROUP OF FINITE GRAPHS

Let G = (V,E) be a simple graph with exactly n vertices and m edges. The aim of this paper is a new method for investigating nontriviality of the automorphism group of graphs. To do this, we prove that if |E| >=[(n - 1)2/2] then |Aut(G)|>1 and |Aut(G)| is even number.

متن کامل

Congruence Subgroups of the Automorphism Group of a Free Group

Let n ≥ 2 and Fn be the free group of rank n. Its automorphism group Aut(Fn) has a well-known surjective linear representation ρ : Aut(Fn) −→ Aut(Fn/F ′ n) = GLn(Z) where F ′ n denotes the commutator subgroup of Fn. By Aut (Fn) := ρ(SLn(Z)) we denote the special automorphism group of Fn. For an epimorphism π : Fn → G of Fn onto a finite group G we call Γ(G, π) := {φ ∈ Aut(Fn) | πφ = π} the stan...

متن کامل

The Automorphism Tower of a Free Group

We prove that the automorphism group of any non-abelian free group F is complete. The key technical step in the proof: the set of all conjugations by powers of primitive elements is first-order parameter-free definable in the group Aut(F ). Introduction In 1975 J. Dyer and E. Formanek [2] had proved that the automorphism group of a finitely generated non-abelian free group F is complete (that i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2000

ISSN: 0021-8693

DOI: 10.1006/jabr.1999.8117